701 research outputs found

    On the functions counting walks with small steps in the quarter plane

    Get PDF
    Models of spatially homogeneous walks in the quarter plane Z+2{\bf Z}_+^{2} with steps taken from a subset S\mathcal{S} of the set of jumps to the eight nearest neighbors are considered. The generating function (x,y,z)Q(x,y;z)(x,y,z)\mapsto Q(x,y;z) of the numbers q(i,j;n)q(i,j;n) of such walks starting at the origin and ending at (i,j)Z+2(i,j) \in {\bf Z}_+^{2} after nn steps is studied. For all non-singular models of walks, the functions xQ(x,0;z)x \mapsto Q(x,0;z) and yQ(0,y;z)y\mapsto Q(0,y;z) are continued as multi-valued functions on C{\bf C} having infinitely many meromorphic branches, of which the set of poles is identified. The nature of these functions is derived from this result: namely, for all the 51 walks which admit a certain infinite group of birational transformations of C2{\bf C}^2, the interval ]0,1/S[]0,1/|\mathcal{S}|[ of variation of zz splits into two dense subsets such that the functions xQ(x,0;z)x \mapsto Q(x,0;z) and yQ(0,y;z)y\mapsto Q(0,y;z) are shown to be holonomic for any zz from the one of them and non-holonomic for any zz from the other. This entails the non-holonomy of (x,y,z)Q(x,y;z)(x,y,z)\mapsto Q(x,y;z), and therefore proves a conjecture of Bousquet-M\'elou and Mishna.Comment: 40 pages, 17 figure

    tt-Martin boundary of killed random walks in the quadrant

    Get PDF
    We compute the tt-Martin boundary of two-dimensional small steps random walks killed at the boundary of the quarter plane. We further provide explicit expressions for the (generating functions of the) discrete tt-harmonic functions. Our approach is uniform in tt, and shows that there are three regimes for the Martin boundary.Comment: 18 pages, 2 figures, to appear in S\'eminaire de Probabilit\'e

    Phase diagram of a generalized ABC model on the interval

    Full text link
    We study the equilibrium phase diagram of a generalized ABC model on an interval of the one-dimensional lattice: each site i=1,...,Ni=1,...,N is occupied by a particle of type \a=A,B,C, with the average density of each particle species N_\a/N=r_\a fixed. These particles interact via a mean field non-reflection-symmetric pair interaction. The interaction need not be invariant under cyclic permutation of the particle species as in the standard ABC model studied earlier. We prove in some cases and conjecture in others that the scaled infinite system N\rw\infty, i/N\rw x\in[0,1] has a unique density profile \p_\a(x) except for some special values of the r_\a for which the system undergoes a second order phase transition from a uniform to a nonuniform periodic profile at a critical temperature Tc=3rArBrC/2πT_c=3\sqrt{r_A r_B r_C}/2\pi.Comment: 25 pages, 6 figure

    On the dynamical behavior of the ABC model

    Full text link
    We consider the ABC dynamics, with equal density of the three species, on the discrete ring with NN sites. In this case, the process is reversible with respect to a Gibbs measure with a mean field interaction that undergoes a second order phase transition. We analyze the relaxation time of the dynamics and show that at high temperature it grows at most as N2N^2 while it grows at least as N3N^3 at low temperature

    An approximate analysis of a bernoulli alternating service model

    No full text
    We consider a discrete-time queueing system with one server and two types of customers, say type-1 and type-2 customers. The server serves customers of either type alternately according to a Bernoulli pro- cess. The service times of the customers are deterministically equal to 1 time slot. For this queueing system, we derive a functional equation for the joint probability generating function of the number of type-1 and type-2 customers. The functional equation contains two unknown partial generating functions which complicates the analysis. We investigate the dominant singularity of these two unknown functions and propose an approximation for the coefficients of the Maclaurin series expansion of these functions. This approximation provides a fast method to compute approximations of various performance measures of interest

    Micromechanical based model for predicting aged rubber fracture properties

    Get PDF
    Environmental aging induces a slow and irreversible alteration of the rubber material’s macromolecular network. This alteration is triggered by two mechanisms which act at the microscale: crosslinking and chain scission. While crosslinking induces an early hardening of the material, chain scission leads to the occurrence of dangling chains responsible of the damage at the macromolecular scale. Consequently, the mechanical behavior as well as the fracture properties are affected. In this work, the effect of aging on the mechanical behavior up to fracture of elastomeric materials and the evolution of their fracture properties are first experimentally investigated. Further, a modeling attempt using an approach based upon a micro-mechanical but physical description of the aging mechanisms is proposed to predict the mechanical and fracture properties evolution of aged elastomeric materials. The proposed micro-mechanical model incorporates the concepts of residual stretch associated with the crosslinking mechanism and a so-called “healthy” elastic active chain (EAC) density associated with chain scission mechanism. The validity of the proposed approach is assessed using a wide set of experimental data either generated by the authors or available in the literature

    Phase fluctuations in the ABC model

    Full text link
    We analyze the fluctuations of the steady state profiles in the modulated phase of the ABC model. For a system of LL sites, the steady state profiles move on a microscopic time scale of order L3L^3. The variance of their displacement is computed in terms of the macroscopic steady state profiles by using fluctuating hydrodynamics and large deviations. Our analytical prediction for this variance is confirmed by the results of numerical simulations

    Phase diagram of the ABC model on an interval

    Full text link
    The three species asymmetric ABC model was initially defined on a ring by Evans, Kafri, Koduvely, and Mukamel, and the weakly asymmetric version was later studied by Clincy, Derrida, and Evans. Here the latter model is studied on a one-dimensional lattice of N sites with closed (zero flux) boundaries. In this geometry the local particle conserving dynamics satisfies detailed balance with respect to a canonical Gibbs measure with long range asymmetric pair interactions. This generalizes results for the ring case, where detailed balance holds, and in fact the steady state measure is known only for the case of equal densities of the different species: in the latter case the stationary states of the system on a ring and on an interval are the same. We prove that in the N to infinity limit the scaled density profiles are given by (pieces of) the periodic trajectory of a particle moving in a quartic confining potential. We further prove uniqueness of the profiles, i.e., the existence of a single phase, in all regions of the parameter space (of average densities and temperature) except at low temperature with all densities equal; in this case a continuum of phases, differing by translation, coexist. The results for the equal density case apply also to the system on the ring, and there extend results of Clincy et al.Comment: 52 pages, AMS-LaTeX, 8 figures from 10 eps figure files. Revision: minor changes in response to referee reports; paper to appear in J. Stat. Phy
    corecore